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ABSTRACT

The problem treated is that of identifying the poles of a finite order

system by observing its transient decay after cessation of input, for a

limited time, using (possibly) multiple observation points and experimental

repetition. Various approaches are studied, having the common characteristic

that a homogeneous matrix equation must be solved. Several techniques that

have been given scant attention in the literature are consolidated into the

treatment, together with new results including an analytical treatment of

the consequences of assuming an excessively high system order, derivation of

a statistically unbiased estimate for an intermediate parameter in the solu-

tion, new theorems on error effects, a recipe for effective use of the sin-

gular value decomposition, a new method for suppression of extraneous poles,

an elucidating derivation and extension of the method of Jain, a new form of

the problem wherein the system poles are eigenvalues, and a study of the

relationship between various pole identification methods.
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MATRIX METHODS FOR DETERMINING SYSTEM POLES

FROM TRANSIENT RESPONSE

by T. L. Henderson

INTRODUCTION

One often seeks to determine the poles of a system by observing its

natural response after cessation of input. Several examples can be cited:

(i) Acoustic transducers (1,2] and electromagnetic antennae [3] are lately

being tested by applying a pulse input, (ii)Aircraft and other military

hardware are being subjected to electromagnetic pulse (EMP) tests [4], (iii)

Engines and other cast metal objects are often tested by direct mechan-

ical impact [5], (iv) Rooms are excited acoustically and decay characteristics

are recorded [6]. In these and other cases the response after cessation of

input stimulous may be expressed as

Yt= k exp(skt) (1)

The aIk's depend upon the excitation, location of the sensor that extracts

Yt. and selection of time origin, but the s-poles, sk, are inherent char-

acteristics of the system and remain invariant so long as the parameters

of the applicable wave equation and its post-excitation boundary conditions

are not disturbed. Sampling at interval T, starting at t , gives a

sequence {y (n)}:

y(n) = rkz n u(n) for --<n<+- (2)
k

where ZkA exp(skT)I rk Cak exp(skto) and the unit step sequence, u(n), has
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been used to extend {y(n)} with zeroes for negative n. Taking Z-transforms

gives

Y(z)/z --k rk/(z - zk) (3)

so that {z I and {r I are the poles and residues of Y(z)/z. This paper
k k

concerns the problem of identifying the "system poles" {zk I through observa-

tion of {y(n)} sequences. Then the s-poles can be determined from

sk  T 1 logz = (loglz + j[arg(z + 2wt])/T (4)

kk k k

The ambiguity due to aliasing is expressed by Z. If ir/T is known to be

greater than the imaginary part of every s-pole then I = 0. Even when this

is not true, if one can repeat the identification process with a slightly

different sampling interval, say T + dT, giving displaced system poles

Zk + dzk , then since dzk = s kz kdT it follows that sk = dzk/(zkdT). This

computation only has to be accurate enough to resolve the uncertainty in Z.

Some of the pole identification methods to be discussed here use decimated

th
subsequences and determine only the q -power of each system pole. This

contributes an additional "decimation aliasing" expressed by X in the

formula

1/q 1/q

z k W [z k] z p{j(wrg[z k] + 2irti/qI 5

q+l
But this ambiguity can be resolved in a similar manner. If zk can also

=q+l q
be determined then zk = zqk/zq , which should be accurate enough to

resolve arg(zk) .

In all that follows we shall assume that the system poles are non-zero,

distinct, and K in number. Throughout this paper we shall use the nota-

tion K' 1 K + 1. Equation (3) can then be expressed with a ratio of

polynomials,

! *4
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8 K- z  + .... + z + 80 (6)Y (z)/z = K- 1-I6
6K 6 K-i+z + -Iz + ""+G8z + 0

K K-i 1 0

where the system poles are the roots of the denominator polynomial. Our

failure to normalize either polynomial enables us to scale the coefficients

of the denominator freely, with the numerator coefficients then being

uniquely determined. Due to the assumptions above, 0 and 0 and at least
K 0

one of the 8's must be non-zero, and the polynomials can have no roots in

A Tcommon. We shall define the K'×I vector, 8A(0,I,... ,K ) .Furthermore

0 1e2 T
the symbolZ will be used to denote the "power vector" (z ,z ,z ,...) where

z is a generic complex variable. The number of elements in the vector must

th
be inferred from the context of its use. If z is explicitly zi, the t

system pole, then its power vector will be denoted Z. (Other than this Z

function, all vectors and matrices in this paper will be real. Note also

that the first element of a vector will always be denoted by a "0" sub-

script.) Using this notation the pole polynomial is simply eT and the

system poles satisfy 8Tz. = 0. Clearing the denominator and taking inverse

transforms in Eq. (6) gives

0 y(n) + 1 y(n+l) + ... + 0KY(n+K) 8 6(n+l) + ... + 8K_1 6 (n+K) (7)

in particular, for n> 0,

(y(n), y(n+l), ... y(n+K)). • - 0 (8)

Since in Eq. (8) one can solve for y(n+K) as a linear combination of the

preceeding y(i)'s, the set {y(n)} forms an autoregressive (AR) sequence.

Another interpretation is that when the sequence is passed through a finite

impulse response (FIR) filter, represented by Eq. (8), whose transfer

III3I i I I I I I I I l .. .. ... .. .
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function has zeroes that coincide with the system poles, then its output

will be zero after enough time has elapsed to fill the delay line with sig-

nal. But the geometric interpretation is that the vector 0, which is an

invariant parameter of the system and unique to within a scalar multiple, is

orthogonal to any post-excitation output sequence of length K' regardless

of the system input stimulus and sensor location. A variety of such subse-

quences can be extracted from a single long output sequence. But if the

system can be repeatedly excited in a variety of ways, if the sensor loca-

tion can be varied, or if multiple sensors can be used to record response

data, then an enormous amount of information can be gotten on what e is

orthogonal to. This should enable one to accurately determine the direction

of e, which is all that matters since its magnitude is arbitrary.

Unfortunately the problem is confounded by the presence of noise in

the recorded data or in numerical computations. The 8 vector must be deter-

mined very precisely to ensure that the roots of 8T Z accurately estimate

the system poles. The selection of T relative to a given s-pole's frequency

and decay time can greatly influence the results. If T is too short then

all of the elements of an output subsequence of length K' have about the

same numeric value, so that every subsequence "points" approximately in the

Tdirection represented by the single vector (1,1,... ,i)T . Being repeatedly

told that 6 is orthogonal to this vector is not much help. Consider the

case of a system whose natural reverberant response is a simple undamped

(or very lightly damped) oscillation at an unknown frequency woo so that

there are two s-poles, sl,2 = ± o' so z1,2 = exp(±jw T). Then the pole

2_ T Tpolynomial is (z 2cos(w T)z + 1) so = (1, -2cos(w T), 1) . Since

this vector is orthogonal to every subsequence of length 3 we have

y(n) - 2cos(w T)y(n+l) + y(n+2) =_0, so w 0 can be determined from

Or0
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T-I

W- T arc cos[(y(n)+y(n+2))/2y(n+l)]. Clearly if T is so short thato

y(n)_=y(n+l)-'y(n+2) then the accuracy would be very poor. A crude sensitivity

analysis of this formula suggests that w can most accurately be determined
0

when the argument of the arc cosine is near zero, which implies T-I(21/wo )

or some odd multiple thereof. This leads to the conjecture that, even for

systems with many poles, zk might be most accurately estimated if T is one

half the oscillation period of that pole, provided the decay time of the

pole is long enough that it rings loudly throughout the sampling process.

In any case some control over the sampling rate is obviously desirable, but

this may be achieved simply by using decimation subsequences, assuming that

T is not too long an interval to begin with. Decimation is equivalent to

multiplying T by an integer q (the decimation "epoch") and shifting t by0

some integral multiple of T, and leads directly to a modified version of

Eq. (8):

(y(n), y(n+q), y(n+2q), .. , y(n+Kq)) =_ 0 (9)

TTwhere (0,i.. is the vector of coefficients for a polynomial

*T Z whose roots are (zq}. Thus subsequences of length K' whose elements are

spaced q samples apart are orthogonal to *, and one can determine the system

poles from i provided the decimation aliasing ambiguity can be resolved.

If T was rather short to begin with, then these decimation subsequences may

point in much more varied and useful directions than if the sequence had not

been decimated. Note that in decimating the data one does not need to dis-

card anything, since many subsequences can be staggered along the original

data sequence. In virtually all that follows, the techniques proposed for

estimating e can also be used to estimate i provided one uses decimation

subsequences.
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The pole identification problem has been addressed by many investigators,

and the number of references to it in the literature is almost unbounded.

Entire areas of control theory and speech processing have been devoted to it,

but often with the following differences: (1) The system is assumed to be

persistently excited, perhaps by a pulse train or by noise, (2) The system

input is measured and incorporated into the analysis. However, much of the

literature does pertain to our problem. Nevertheless, we shall break with

tradition by presenting our results first and then discussing their relation

to those of other researchers.

Finding 6 when shown what it is orthogonal to is equivalent to solving

a homogeneous matrix equation Ax=O, where the rows of the A matrix consist

of output data subsequences. Because the homogeneous problem is lightly

treated in most textbooks, a section of our paper summarizes some of the rel-

evant techniques. This is followed by some autoregression matrix terminology,

theorems, and algorithms developed by the author especially for this applica-

tion, although their simplicity suggests that they may have been discovered

in some form by mathematicians long ago. With this preparation, various

approaches to solving the central problem are discussed. Connections with

the work of Jain [7] are considered and a simpler and more elucidating path-

way to his results is found, providing a generalization of the method. Some

topics from the literature are discussed and several other results are pre-

sented before posing unanswered questions.

Our treatment departs from most of the literature in that it stresses

the use of matrix methods and vector space geometry rather than "sequential"

concepts, primarily because we permit the use of several output sequences

derived from possibly different input excitations or sensors, and it strives

to avoid ad hoc and asymmetrical treatments of the data that have been used
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in the past. In particular we avoid the artificial conversion of what is

fundamentally a homogeneous problem into an inhomogeneous one. We present

for the first time a rigorous theoretical foundation for the popular prac-

tice of using "extra-wide" data matrices, i.e. of pretending there are more

poles than actually exist.

SOLVING THE HOMOGENEOUS MATRIX EQUATION

For an MxN matrix A define the nullspace, O(A), and rowspace, O-1(A), as

{x: Ax = 0} and {x: x = A Ty}. If the rank of A is K, then O-L(A)CRN and

O-*(AT)CR M, both being subspaces of dimension K. Also O(A)CR N , and it is a

subspace of dimension N-K. Indeed O (A) and 4-1 (A) are orthogonal complements

of RN, so that any xeRN can be expressed as an orthogonal sum, x = xA + xx ,

where xA is the projection onto the rowspace of A and x- is the projection
AA

onto the nullspace. Given a matrix E of the same shape as A we shall denote

by EA and EA the matrices obtained by decomposing the rows of E similarly;

thus E = EA + E-, AA - A, and A = 0. Moreover, occasionally we shall use

T
the notation "[X]un to denote the unit vector in the direction of x. A A

unit

and AAT also have rank K and *(A A) = O(A). The homogeneous equation Ax=0

is thus solved by any x in O (ATA). If the rank of A is N-l, then the solu-

tion is unique to within a scalar multiple, since Oa(A) is of unit dimension.

If rank(A) is N, then no solution exists.

If A is a square NxN matrix, then AX adj(A) = det(A)XI, recalling that

adj (A) is the matrix obtained by replacing each element of A by its cofactor

and then transposing. In particular if rank(A) is N then the matrix is non-

-l
singular and the inverse can be defined as A = adj(A)/det(A). However if

rank(A) <N, i.e. A is singular, then det(A) = 0 so that AX adj(A) = 0,

implying that every column of adj (A) solves the homogeneous equation Ax=0.
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Unfortunately adj(A) is identically zero whenever rank(A) < N-i, so a non-

trivial solution is provided only if rank(A) is N-i, in which case all the

columns of adj(A) are collinear and at least one is non-zero. Thus the

solution to Ax=0 can be taken as any non-trivial column of adj (A) or alter-

natively as x = adj (A) x x for any NXl vector x so long as it is chosen

to avoid a trivial solution.

Given an MxN matrix of rank K, the traditional approach to solving Ax=0 1
is to proceed as follows: First discard rows of A so as to form a rank-

preserving KXN matrix B; since O(A) = cf(B), it follows that Bx=O has the

same solutions. Now delete columns of B to leave a KXK nonsingular matrix Bi,

and move the deleted columns to the right side of the equation together with

the corresponding elements of x to produce the inhomogeneous equation

B X1 = -B x o, where B is KX(N-K) and x has been separated into the Kxl and

(N-K)xl vectors x1 and xo . If, as is usually the case, the rank of A can be

preserved by simply deleting its rightmost columns, then one can simply par-
;Bo  a T T T

tition B = and = [ 1X;X to achieve the desired result. Now

xI = -B B x so that the general solution is

1 100

x = Cx 0 
=  x 0  (10)

where I is (N-K) x (N-K) and x is an arbitrary (N-K) x 1 vector, thus giv-0

ing a solution subspace of dimension N-K. If something more complicated

than a simple partitioning is used to form the matrices B1 and Bo , then Eq.

(10) is still valid with the rows of C interchanged appropriately.

This traditional method is fine if the data (i.e. A) are noiseless and

computations are exact. Otherwise it is worthwhile to search for better

alternatives. In particular if M >> K then it is wasteful to discard so
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many rows to get B, since each row provides some information on what 8 is

orthogonal to. It would be better to solve Px=O, where P = A TA so that

O(P) = O(A); then only a few rows of P will have to be discarded to get B,

and every element of A contributes something to the solution. (An alterna-

tive would be to fabricate rows of B as averages of those of A, perhaps aver-

aging out some of the noise in the process. But this could as easily average

out some of the signal, and it would be hard to guarantee preservation of

rank. This alternative will not be explored further.) Typically there are

many rank-preserving ways to discard rows of P, and to choose which columns

to transfer to the other side of the equation. These choices are arbitrary

and may influence the accuracy of the result; indeed they control the degree

to which each of the elements of A contribute to the final result. This

arbitrary and asymmetrical use of data is bothersome and might produce statis-

tical bias.

In the special case where rank(A) is N-i, the adjoint solution can post-

pone or remove the arbitrary asymmetry. The direct solution to A Ax=-O is

just x = adj (ATA)xo, where x is an arbitrary Nxl vector. Even the arbitrar-

iness of x can be symmetrically removed. Since adj (ATA) has collinear0

columns and is symmetric, its elements obey q2 2 qiiq and the j column

can be expressed as qjj I X [(-)llqllj, (M)2jq22 1 , ... , (±)NlqlNI]

where (±)i - sign (qij). Thus the solution can be expressed formally as
T 2' .. ]T,

x = [ A2, AN where Ai is the square root of the magnitude of

the ith diagonal cofactor of ATA, with the proper sign affixed. The signs

can be determined by examining any column of adj (A TA).

The adjoint solution enables the development of an unbias-ad estimate,

based on the following theorem:

I 1 THEOREM: Let Al, A2 be statistically independent, random matrices,
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whose elements are also statistically independent. Then 6(adj (A A) =
1 2

adj (4{AT} ~A2}1, where is the expectation operator.

1 2Thus if A 1 and A 2 are separate measurements of the same A corrupted by

additive, zero-mean noise that is independent from element to element, then

the estimate x = adj (A A)x is an unbiased estimate of a true solution x.12o

The singular value decomposition (SVD) can always be used to obtain a

solution; indeed its applicability overlaps that of the adjoint solution.

T TThe SVD of an MxN matrix A is expressed by U AV=S and A=USV where S is an

WN diagonal matrix of elementss >s > . > =s 2 = ... sN = 0,

where rank (A) is K. The "singular values" s. are the square roots of1

eigenvalues of the non-negative definite matrix ATA, whose eigenvectors also

form the columns of the NXN orthogonal matrix V. The eigenvectors of AAT

form U. (Incidentally ATA and AAT agree as to their non-zero eigenvalues.)

.thThe notation sv. (A) will denote the i singular value of any matrix A.
.

The singular values can be used to bound IljAx!i for any x as follows [8]:

lixlxX sv1 (A) > iIAxil >_ iil x svN(A) and IIAxAII >-i IxAl x sv,,(A)

where rank (A) is K. Clearly 1 AIl = svI (A). (Note: lixjj denotes the

Euclidean norm of the vector, and I AIl is defined as the maximum of j tAxi

for all unit vectors x.) The U and V matrices are not quite unique; the

direction of any column vector can be reversed, and corresponding to a

multiple eigenvalue (including the zero eigenvalues) any orthonormal basis

for the eigenspace can be used. The homogeneous equation Ax=0 now takes

the form USVTx=0 or simply Sy-O where y _ V x, and we have premultiplied

the equation by UT-U "1. But due to the diagonal form of S, the solution is

immediate: y - [0,0,..O;y I where y is an arbitrary (N-K)xl vector.
00

Thus x = Vy = Voy , where V consists of the rightmost N-K columns of V.

But these columns are just the basis vectors for the eigenspace of the zero

- 4
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eigenvalue of A TA, i.e. basis vectors for O(A), so it seems we have only

reiterated that Ax=-O implies xc (A). But the superiority of the SVD method

emanates from the fact that, due to noise or computing inaccuracy, A TA will

not be exactly singular; the SVD method will reveal the extremely small

eigenvalues that arise, and the associated columns of V should approximately

span O(A). Furthermore the SVD can be achieved by a very orderly procedure.

An extremely well documented algorithm and FORTRAN program appear in the

textbook of Lawson and Hanson [9] under the label SVDRS. (Note: In their

notation one should set BA=O so that array B is not referenced.)

When the diagonal matrix S resulting from the SVD algorithm is replaced

by S, wherein all but the first k elements (i.e. the k largest) have been

- Tforced to zero, and then used to compute A=USV , the result is an optimum

approximant to A of rank k, denoted A(k;SVD). It has been shown [9] to be

closest as measured by either the ordinary matrix norm, I IA-Alj, or the

Frobenius norm, 1IA-A1F, where 'AJ1 F A- (Z(a ij2) Thus if A has been

corrupted by noise then a logical estimate of the nullspace is O(A) = 0(A(K;SVD)),

where K is the "true" rank A would have if it were uncorrupted by noise.

This estimate of the nullspace thus provides a general solution to Ax=0.

Using the approximant to solve nonhomogeneous equations is a common practice.

The justification for our approach to solving the homogeneous equation is

strengthened by the following theorem.

§2 THEOREM: If A=A+E, where nothing is known of the MXN matrix A except that

it is of rank K, and the elements of E are zero-mean, independent, Gaussian

random variables having equal variance, then A(K;SVD) and its nullspace are

maximum likelihood estimates of A and O(A), respectively. Moreover, if it

is known only that A is singular, with rank(A) unknown, then the maximum

likelihood estimate is obtained with K=N-I. If on the other hand K is
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random with known probability distribution P K' then choose K to minimize
2 2.

IIA-A(K;SVD)JII F - 2a2 log PK' where a is the noise variance.

If only a single solution to Ax=O is desired rather than the general

(nullspace) solution, then one can simply point x in the direction of the

rightmost column vector of V, since it is the basis vector of O(A) that has

possibly been perturbed the least. But that is the same as picking x to be

the eigenvector corresponding to the smallest eigenvalue of A A; i.e. picking

x to minimize (xTATAx)/I IxI 2 or lixJJ/lxlJ. When normalized to I IxIIl

we shall denote this estimate by x[norm], where "norm" stands for both "normal-

ized" and "norm-minimizing", but it is only unique to within a direction

reversz.l. Since the addition of noise can be expected to destroy all singu-

larity of A, and even eliminate any multiple eigenvalues, then ATA will be

nonsingular and its smallest eigenvalue is the largest of (ATA)-. Matrix

iteration, xi+ 1 = [(ATA)-lxi]unit, will converge to x[norm]. However since

A is nonsingular only because of noise, it may be poorly conditioned and

difficult to invert accurately, so the method must be used cautiously. Of

course direct matrix inversion can be avoided by numerically solving the

ATAx+= x. with subsequent normalization for each iteration. It isequationA-A wihsbeunnomlztofoeahieain Its
i+l i

interesting to note that since (ATA)- = x adj(iTi), where the scalar A is

just the determinant, the adjoint solution discussed previously may be

regarded as one step in the -natrix iteration process (except for the trivial-

ities of normalization and possible direction reversal) from an arbitrary

starting point x0. Indeed an "improved" adjoint solution may be put forth

as [adj(A A)] x0 for any integer X. In the absence of noise it will still

A connection between the adjoint solution and the traditional least-
squares solution of the inhomogeneous equation will be given in a later
section.
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give the same solution when rank(A) is N-i, and in the presence of noise it

tends toward the direction of x[norm]. Moreover by using several separate

measurements of A in conformance with Theorem §1 one can improve the unbiased

estimate in a similar manner.

When A is corrupted by noise one expects that x will depart from O (A).

The following theorem provides an upper bound for that error.

§ 3 THEOREM: If the unit vector x is an estimated solution to Ax=O constructed

to be within the nullspace of A(K;SVD) where A=A+E and rank(A) = K, then the

error XA is bounded according to IlIAll<blb 2Db3 'b4 and if IE I<<svK(A)

then the denominator of each bound is approximately svK(A), where bI A (I lIIi
+ IIEII}/svK(A) ; b2  2 IIEII/svK(A) ; b 3  flli_&It + IIE iI'/SvK(A+EA)

b4  211E-I I/SvK(A+E A). Moreover b, < b < 2b, and b3 < b4 _ 2b fl
Discussion: Note that the theorem includes x = x[norml as a special

case. x- is the "correct" portion of x (i.e. the component actually in O(A))

and xA is the error. Since x is a unit vector, l lxAl is the sine of the

angle between x and O(A). (The angle between two unit vectors is the arc

cosine of their inner product; the angle between a vector and a subspace is

then defined as the smallest such angle, always taken positive.) Note that

IlEt is the square root of the largest eigenvalue of Lwith a similar result
holding for E-. Also (VK (A))is the smallest non-zero eigenvalue of k.

Clearly if IIEIl<<svK (A) then b 2"l so the error component is small, but the

b4 bound shows that error occurs only when some portion of E "complies" with

the rowspace of A. Observation of a single noisy matrix A will tell us

little of the error, E; thus knowledge of I tEil or I EAlI must be obtained

a priori, e.g. in statistical form. The singular values of A can be used

a posteriori to approximate the denominators of the bound s. Since bounds

b2 and b 4 are almost as tight as b and b3 , use of p a osteriori does

S-- 4
_ -__
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little to refine our error estimate. The distinction between J IAxJj and

I IxAII is important: The "residual error", i.e. I svN (A), measures

the degree to which the noisy matrix A refuses to admit a homogeneous solu-

tion. On the other hand 1 IXAjI measures the actual error in the estimate x.

Although scaling a row of A does not affect the solution of the ideal equa-

tion Ax=O, scaling of a row of A may influence the error in x[norm] since it

can affect sv K(A).K

Even when x is truly a solution of Ax=O, the "residual" vector Ax cannot

be expected to be a null vector. In some problems the statistics of the

residual vector may he known, at least approximately. Indeed suppose that

it is zero-mean with positive definite covariance matrix A. Then instead of

choosing x to minimize lAxll it is more equitable to minimize the weighted norm

T T -1- 1 -I lixl A = (x A A Ax) . We shall denote by x[norm:A - I] the unit vector that

minimizes this norm. It is the weakest eigenvector of ATA-A. The SVD method

can also be modified to incorporate this covariance weighting. One simply

does the SVD of A-1A instead of A. The matrices A and A _ A- A have the
w

same nullspace and A (k;SVD) is the best k-rank approximant to A , minimizingw w

11IAw- w1l = iJA-A' wl AI. So A Aw is the best weighted approximant to A.

Therefore the corresponding weighted estimate of *(A) is ,(AA ) = *(Aw).
w w

All of the results given in this section hold when the weighted norm is sub-

stituted for the ordinary norm, with appropriate interpretations and adjust-

ments.

AUTOREGRESSION MATRICES, GENERATORS, AND SUBSPACES

§ 4 DEFINITIONS: For any K'xl vector e, the "polynomial produced by e" will

refer to e TZ, where Z is the complex power vector defined previously. Any

vector 6 is said to be a "generator" if its first and last elements are both
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non-zero and the roots of the "generator polynomial" OTZ are distinct. Gen-

erators that differ by a scalar multiple are considered equivalent. (Note:

the interpretation of the elements of 8 as coefficients of the system pole

polynomial will be ignored until the next section.) Given any generator 8

and a positive integer Z define the ZxN matrix G(X;8), where N = K'-l+t =

K+Z, as:

00,01, -- f .. .,K 0,0,.....

0,00.. ...... 0K,0 , ..... 0

G(1;8) = . (11)

%.0,0f...,0,80,81,...a K

Now define the "Ith autoregression nullspace generated by 8", denoted

(8), as the rowspace of G. Then it is easy to prove the following theorems:

N§ 5 THEOREM: Rank(G) is 1, so that 91(8) is a subspace of R having dimen-

sion 1, where N-K+1. Moreover the generator of the subspace 0, is unique to

within a scalar multiple.

§ 6 THEOREM: For every Nxl vector x in fl (8), the roots of the polynomial

xT Z constitute a superset of the roots of the generator polynomial 8T Z. The

"extraneous roots" are 9-1 in number, and any complex extraneous roots must

occur in complex conjugate pairs. Indeed an x in a2 can be found to produce

any specified set of extraneous roots.

1 7 THEOREM: The subspace nl9.(8) can also be defined as that subspace of R
N

which is orthogonal to each of the complex power vectors Zi, of the K roots

of the generator polynomial z., with N=K+1.

J § 8 DEFINITION: A sequence {y(n)} is said to be "8-autoregressive" (8-AR),

where 8 is K'xl, if every subsequence of length K' forms a vector orthogonal
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to e. This implies that for n > K, y(n) = X (0K1 y(n-l) + OK2Y(n-2) +

.... + 80 y(n-K)). Thus the first K members of the sequence are arbitrary and

will be termed the "seed", while the remaining members are determined by a

recursion formula. Clearly if any leading group of members is deleted, the

remaining sequence is still e-AR.

§ 9 THEOREM: The elements of an Nxl vector y form a 0-AR sequence if and

only if y.LQ (e) where k = N-K = N-(K'-l) and 0 is K'Xl.

§ 10 DEFINITION: An MxN matrix A is said to be 0-AR if each row constitutes

a 0-AR sequence. Clearly the definition makes no sense unless N>K'. The

matrix is termed "minimal-width" if N=K' and "extra-wide" if N>K'. If rank(A)

is K(=K'-l), which according to the next therem is the most it can be, then V
the O-AR matrix A is said to be of "sufficient rank".

5 11 THEOREM: If the MXN matrix A is 0-AR where 0 is K'xl, then rank(A) <

K=K'-1. Further, if A is of sufficient rank then O(A) E a (0) where L=N-K,

and any solution of Ax=0 produces a polynomial of degree N-i whose roots con-

stitute a superset of the roots of the generator polynomial.

§ 12 MORE DEFINITIONS AND DISCUSSION: Clearly a 0-AR matrix is the continua-

tion eastward of its "seed submatrix" consisting of the leftmost K columns.

If it happens that AT is 8-AR as well, then the seed submatrix may instead

be regarded as the KXK matrix in the northwest corner, since from it the entire

matrix can be propagated autoregressively. A sufficient (but not necessary)

condition that a square seed matrix can propagate such a matrix is that the

seed be symmetric. A special case is the "Hankel" 0-AR matrix, so named

because the MxN matrix A is formed from a single 0-AR sequence {h(n)} of

length M+N+1 as Aij = h(i+j-2). The Hankel matrix has an interesting prop-

erty: For any Nxl vector x, Ax = G(M;x)h where h is the vector whose elements

constitute {h(n)}. This property is just a consequence of the fact that
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discrete convolution is commutative. The numbering pattern for a 8x6 Hankel

matrix is shown in Figure 1. For this case there is no need to define the

kernel as a submatrix: the kernel simply consists of the first K matrix

elements encountered along either edge starting from the northwest corner, and

the entire matrix is propogated from it via the 8-AR property. Any submatrix

of contiguous rows and columns remains a Hankel 8-AR matrix, and A and AT are

both 8-AR.

The central problem considered in this paper may be stated succinctly as

follows: Given a O-AR matrix A or a noisy version thereof, A, where the K'xl

generator 8 is unknown, find the roots of the generator polynomial. Finding

6 is normally an intermediate step, albeit one we would prefer to bypass since

the roots may be poorly conditioned with respect to the polynomial coefficients.

Various paths to the solution are possible, given a matrix A of sufficient

rank and at least minimal-width. From Theorem §1l O(A) = 2 (6), and any x

solving Ax=O produces a polynomial whose roots include the desired roots of

the generator polynomial. If the extraneous roots can somehow be identified

then the problem is solved. If instead we find Z linearly independent solu-

tions of Ax=-O, i.e. a basis for 2 (8), then 8 can be determined by a process

described below without having to identify the extraneous poles. If a noisy

matrix A is used then the method used to solve Ax=O becomes significant. The

estimate x[norm] can be found as the weakest eigenvector of A A and used to

produce a polynomial whose extraneous roots may now be regarded as "noise

poles". The more traditional methods of solving the equation may also be used;

they may entail less computation but perhaps more error. If the A matrix is

of minimal width then any solution of Ax-O is collinear with 8 and there are

no extraneous roots. However the roots may be perturbed greatly by noise in A..

Suppose that a set of Z basis vectors gl' g2 ' "" g- has been found for

Lli
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$(A) = (6£(); i.e. the gi's are linearly independent solutions of Ax=0. In

practice the gi's may be obtained as the rightmost columns of the V matrix in

the SVD expansion of A, or by some cruder technique. For example if some

quick method is used to solve the noisy equation Ax=0 then repetition of the

solution after tinkering with A (i.e. inserting new data, scaling rows, etc.)

would likely result in linearly independent solutions. Regardless of how

obtained, the solution vectors gi can be used to find e through the following

algorithm:

T T
§ 13 ALGORITHM: First define G1 as the £xN matrix whose rows are gl, g2 '

T
... , g9 , so that the rowspace of G is O(A) = 0 (0), thus identical to the

rowspace of G(Z;e) defined in Eq. (11). Then starting with the topmost row use

Gaussian elimination to form the upper-trapezoidal matrix G2 as exemplified

in Figure 2 (b). Then repeat the process starting with the bottom row and elim-

inating terms on the right to form the upper-parallelogramic matrix G3 exempli-

fied in Figure 2(c). Assuming the rank of G has been preserved the rowspace
1

of G3 is the same as that of G(1;8), so the non-zero portion of each row of3!

G is a replica of 0 to within a scalar multiple (If a noisy matrix A is
3

used then the rows are only estimates of 0.) Now define G as the ZXK' matrix
4

formed by "straightening out" the non-zero paralellogram of G4 and discarding

the zeroes. In the absence of noise or computational error the rows are

collinear and rank(G4) is 1. If noise is present then each row is an estimate

T Tof 0 . Logically a "best" estimate of 0 can be obtained by using the SVD to

find the best unit-rank approximant to G4, whose collinear rows then produce

Tidentical estimates of e . But this is completely equivalent to estimating

e as the strongest eigenvector of G4G4 , a task that can be performed very

easily with matrix iteration.

The procedure presented above can be modified so as to constitute a
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stepwise reduction of Q (6) to Qi (e), ultimately arriving at Qi (e) whose

single vector direction is 0.

§ 14 THEOREM: Let the Nxl vectors gl, g2 1... g form a basis of Q2Z(0), of

which at least one must then have a non-zero first element; assume it is g1 "

Furthermore assume the g.'s are scaled so that the first element of each is

Aeither 1 or 0. Then for i=2 to £ define a. = gi-g I if the first element of gi

is 1, otherwise ai = gi- Then the set {gl,a 2,a3 ..a., } is still a basis of

gk(e), and the set of contracted vectors {12,a3" a i£} obtained by discarding

the first element of each a. forms a basis of n_(0). E

§ 15 COROLLARY: The theorem remains valid if the words "last element" are

substituted for "first element" at every occurrence. E
It should be remembered that Q C RN while 0_ C R N - . If in the process

of stepwise reduction one uses Theorem §14 repeatedly the final result will be

a single vector equivalent to the bottom row of the matrix G obtained with
4

Algorithm §13. But if one switches at some point to using the corollary then

the result will correspond to one of the other rows of GG4•

Now we present a formula for the sensitivity of the roots of the generator

polynomial, when estimated as the non-extraneous roots of the polynomial pro-

duced by x, where x is some approximate solution to Ax=0. Recall that if

is a unit vector then its error component is measured by IXAII.

§ 16 THEOREM: Suppose IIx1I=l and x lies approximately within O(A), i.e.

SxAI<<jHx~iI. Then the non-extraneous roots of the polynomial xT Z depart

from the true roots z., z2 ,.., zK of the generator polynomial according to

the first-order formula:

-x Z.
AT

zi xTDZ"
2.
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where D is a diagonal matrix, D ii=0, Dkk=/k for k=2 to N. E
If in particular x is x[norm], then the above result can be combined with

Theorem §3 to produce an approximate error bound in terms of I JEIlI and the

non-extraneous roots, zi , of the polynomial it produces. (The bound is

approximate because the sensitivity formula is correct only to first order,

and estimated roots are used.)

dzr k 2 1

. zL k (12

svK( ()xixTDZI (12)

In the problem of finding 8 given a noisy version 8-AR matrix A, it

might appear that Theorem §2 should always apply, and that 0 = O(A(K;SVD)) is

a maximum likelihood estimate of O (A). However, there are two critical assump-

tions in the hypothesis of Theorem §2: (1) that the noise corrupts the ele-

ments independently, and (2) that absolutely nothing of A is known except for

its rank. Clearly if A is known only to be of minimal-width and sufficient

rank with 8 unknown, then we know only that its rank is one less than its

width. (If any MxN matrix A has rank(A) = N-1, then it is automatically 8-AR

for the vector 8 that spans O(A).) So if assumption (1) is satisfied then

Theorem §2 does indeed apply. On the other hand if A is extra-wide and e-AR

then we know mere than just its rank, so assumption (2) is violated. If A is

known to ha',e been formed as a Hankel matrix then both assumptions are violated.

(But if by some fortuitous circumstance A(K;SVD) does indeed conform to all

of our prior knowledge of A, then the conclusion of Theorem §2 should still

apply.) These facts might lead one to avoid using either extra-wide or Hankel

matrices. However Hankel matrices appear to be very economical since each

new element of data permits the inclusion of another -ow. Furthermore several

investigators have proven that if one uses an extra-wide Hankel matrix and
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traditional methods of solving Ax=0, then the non-extraneous roots of the

resulting polynomial often estimate the true roots much more accurately than

if a minimal-width matrix had been used [10,11,12]. Clearly there remain many

unanswered questions regarding the efficacy of the various alternatives.

POLE IDENTIFICATION

To apply the methods developed above to the pole identification problem

posed in the introduction one has merely to observe that every post-excitation

output sequence that can be elicited from a system of order K is 0-AR, where

the generator 8 is the K'xl vector of the pole polynomial's coefficients.

Thus every output subsequence of length N=K+t will be orthogonal to 0 z(8),

which we shall now denote simply as Q, the "Ith polespace", to concede its

relationship to the system poles. Of course Q is just the space spanned by

O itself. Thus any MXN data matrix A whose rows are output sequences will

T
obey *(A) = 4(A A) = O. where Z = N-K, provided enough rows have been used to

give the matrix sufficient rank (i.e. rank(A) = K). This will hold true even

if the various rows were obtained as a result of separate tests, with different

input excitation, or different sensor placement. Any solution of Ax=-0 will

produce a polynomial whose roots inc'ude the system poles together with N-K'

extraneous ones. If decimation sequences of epoch q are used, then the approp-

riate subspace is Qz(W), which we shall denote as 0z. The K'xl vector 4 is
th

formed of the coefficients of the polynomial whose roots are the q powers

of the system poles.

§ 17 PRONY'S METHOD [141: Given a single output sequence of length 2K, form

an MxN minimal-width Hankel matrix A, where M=K and N=K'. Then solving Ax-O

gives the generator 8. Traditionally this is done by converting to a non-

homogeneous equation, which in this case is entirely equivalent to forcing

6k=1. Since the equation is not overspecified it always has an exact
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solution, and the only error is due to noise in A. Experience proves that

even a small amount of noise can be devastating [14].

§ 18 LEAST-SQUARES PRONY METHOD [10,11,12]: Given an output sequence of

length greater than 2K one can still form an MXN minimal width Hankel matrix

A, where N=K' but now M>K. The equation Ax=O is now overspecified. Following

the traditional approach discussed earlier one seeks to determine the null-

space *(A) = *(A TA) by solving A TAx=-0. Even this equation is overspecified

since A TA is K'xK' but rank(A TA) = K. If the rightmost column of A can be

partitioned off without altering the rank, i.e. A = [A +;a] where "a" is the

rightmost column of A and the submatrix A+ is nonsingular, then the equation

ATAx=O can be expressed as

FT IT
AT+A+ I +a

[T IT]
a A+ :a a

The solution, normalized so that the last element of x is one, can be

expressed immediately as

(ATA+) 'Aa]__(3* x . . . .~- (13)

Since A is a minimal width data matrix the solution, x, given by Eq. (12)

should be the generator vector e, since the solution of Ax=O, or equiva-
Tlently A Ax=0, is unique to within a scalar multiple. Thus the same

answer would result if one used the adjoint solution x = adj (ATA)x0, regard-

less of the choice of x0. On the other hand if a corrupted version of A

is used, namely A = A+E where the noise matrix E increases the rank so that

rank(A) is K', then one expects that the adjoint solution would produce a

result different from that of Eq. (13). However the following theorem

=_ _1 _
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establishes a connection.

§ 19 THEOREM: Let A = [A +;a] where rank(A) = rank(A+) = K and A+ is non-

singular and let A = A+E = [A+;a] where rank(A) is K'. Then

adj( T-)x 
(A +A+) -A a

provided x0 = [0,0,... ,Oc]T

.. -T- -1-T-
a {I-A+ (A +A ) A } a []

det(ATA)

Many users of this least-squares Prony Method have demonstrated quite

clearly that when one "requests" more poles than actually exist, i.e. when

one constructs A to be extra-wide, the resulting non-extraneous poles estimate

the system poles with greater accuracy [10,11,12]. This fact persists even

when data are generated artificially to ensure that only a finite number of

T -1poles are really present. Theoretically (A A+) should not even exist,

since A+A+ is then an (N-l)x(N-I) matrix of rank K<N-1. Clearly it is possi-

ble to carry out the computation of Eq. (13) only because of noise inherently

T
present in A or introduced by imperfect computation of A+A+. Indeed in the
presence of noise we may regard Eq. (13) as a special case of the adjoint

solution through Theorem §19. Thus when an extra-wide data matrix is used

the least-squares Prony Method succeeds only because of noise, and Eq. (13)

produces an (approximate) solution to the equation A TAx=O. Moreover the

fact that the roots qf the resulting polynomial xT Z include the true system

poles as a subset has previously been observed only experimentally; it has

remained unjustified by theory until now (i.e. in our Theorem §6). But

the fact that poles can be estimated more accurately by using an extra-wide

matrix remains to be justified by theory. (The reader may argue this point
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with references to "generalized least squares", noise modelling, decorrela-

tion of residuals and the like, but we shall contend in a later section that

such an explanation has serious logical gaps, at least as it pertains to our

problem.)

The methods described in preceeding sections of this paper provide many

alternate avenues toward the solution. Specific approaches, results, and

adaptations are discussed below:

§ 20 CONSTRUCTING DATA MATRICES FROM A SINGLE OUTPUT SEQUENCE {y(n):n=0,1,2,

.: The construction of a Hankel matrix as described under the least squares

Prony method is an obvious course of action. However in that case the noise

contributions are not statistically independent from element to element in the

matrix, since the noises appear repeatedly along with the elements of {y(n)}.

But it is possible to construct an MxN data matrix in which the noises are

independent by using a "sliding grid" of decimated subsequences, for example

Aij = Yr where r = (i-l) + (j-l)q and q(>M) is the decimation epoch. An

advantage of the noise independence is that it is possible to apply Theorems

§1 and §2. But in applying Theorem §1 to obtain an unbiased estimate of 6

it is necessary to have two replicates of the same sequence {y(n)}, each with

different (and totally independent) noise components, to construct A and A2 .
1 2'

Also note that Theorem §2 is of somewhat limited value, since the K-rank

approximant A(K;SVD) probably will not strictly possess the "jliding grid"

characteristic (i.e. its rows cannot be reassembled into a single autoregres-

sive sequence), and thus 6 is not the true maximum likelihood estimate.

Whether or not the construction of matrices with independent noise components

Jhas other benfits beyond application of Theorems §1 and §2, or perhaps even

has drawbacks, has not been demonstrated.

§ 21 USING ROWS OF A DERIVED FROM DIFFERENT EXCITATIONS OR SENSORS: A

* Id
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single output sequence {y(n)} may reveal some poles only weakly, and provide

only a brief glimpse of poles having a rapid decay rate (i.e. small Izil).

The advantages of obtaining separate output sequences, using totally different

system excitations (to within the limits of one's ability to control the

excitation at all), and then using them to construct more rows of A, has been

largely ignored in the literature. Further, the use of independent rows may

enable use of Theorems §1 and §2 to obtain "nice" estimates of e.

§ 22 USING "BETTER" SOLUTIONS TO Ax=0. Since investigations of the past

have usually converted Ax=O to a nonhomogeneous problem, the cost-effectiveness

of using the other solutions we have discussed is worth exploring. Indeed the

norm minimizing solution x[norm] is not that much more difficult to obtain.

The least-squares Prony solution of Eq. (13) is usually obtained by solving

T T I
(A A )x+ = A+a, where x+ is all of x except for its last element, rather than

actually inverting the (N-l)x(N-I) matrix. However if an extra-wide matrix A

is being used (which is almost always the case) then the matrices (A A+) and

(A A) are nonsingular only because of noise, and matrix iteration with

-T- -1(A A) can find x[norm]. But this can be done by successively solving

A xi 1 = xi" with occasional renormalization. Indeed the solution for x

found from Eq. (13) could be used as the initial guess for x. Thus instead

of solving a single (M-l)x(M-l) nonhomogeneous matrix equation we solve an

MxM equation repeatedly; hopefully a few repetitions will suffice. Of course

with A extra-wide, x's polynomial will have some extraneous poles to sort out.

§ 23 EXPUNGING EXTRANEOUS POLES: When an extra-wide A is being used,

Algorithm §13 or Theorem §14 provide a means for eliminating the extraneous

poles if K linearly independent solutions of Ax=O are first found. These

independent solutions can be obtained by use of SVD or perhaps simply by

repeating the solution after some tinkering is performed on A (for example
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by the introduction of some new data containing new noise). Whether the roots

of the resulting e-polynomial will be more accurate estimates of the true

poles than are the non-extraneous roots of the larger i-polynomial remains

to be determined, but at least this approach can reveal which roots of the

x-polynomial are extraneous in a fashion reminiscent of the de-aliasing pro-

cedures described earlier.

§ 24 PREFILTERING OF DATA: It may be desirable to prefilter a data sequence

{y(n)1 by some simple digital filter, for example to improve the signal-to-

noise ratio. This may be done to enhance the accuracy in determining a

particular pole or set of poles, as by the use of a bandpass filter. After

such filtering the data sequence has the filter poles incorporated into its

generator polynomial. This increase in the number of poles must be taken into

account when constructing the A matrix. These new poles are known, and ought

to be forced into the solution somehow (see below). Moreover if the use of

a particular prefilter enables us to accurately determine some subset of the

poles, then when we use another prefilter to enhance estimation of other

poles we should force our previously estimated poles into the solution. ti

§ 25 FORCING KNOWN POLES: The use of prefilters is not the only impetus for

wanting to force known poles. The choice of the sampling interval T or deci-

mation epoch "q" may be tailored to accurate estimation of particular poles,

and once determined these estimates should be forced into subsequent analyses

done with different T or q. Forcing poles is not difficult. Assuming for

simplicity that A is a matrix of ordinary (i.e. not decimated) data, then

O(A) = Q . And the power vector Z. of each system pole z. is orthogonal to1 1

Q z by Theorem §7. But if a z. is known then we need only solve Ax=0 subject

T T 0 1 Nto Zix=O. If the pole zi is real, then Z. 0 i ,z....zi] can merely be

adjoined to A as a new row with a large scaling constant C. The larger C,
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the more strongly the pole z. is forced into the solution of A fx=0, where Af

is the new matrix formed by addition of this new row. If the pole z. is com-1

plex then the same procedure could be used, but this has the unfortunate

effect of making A complex. A better approach is afforded by realizing that

complex poles occur only in complex conjugate pairs, so that instead of

T T 0 N T A 2[ZT + (Z i )adjoining Z. and [(Z.) ,(7.L)'.... (z*) ] one adjoins a, c /2
1 1+ 1 1

and a jC [Z - (Z which are both purely-real row vectors, and cana 2 = i

be expressed as

T 2 N
aI = C[l, rcosw, r cos2w,.., r cQsNw]

T 2 N.
and a2 = C[l, rsinw, x sin2w,.., r sinNw]

with r Izil and w A arg(zi).

Thus for each pole forced, one more row is added to A. The choice of

the scaling factor C is ad hoc, and some adjustment may be necessary.

§ 26 USE OF DECIMATED DATA. Everything that has been said concerning the

linkage between A and 6 when A is not composed of decimated data carries over

to a linkage between A and * when A is decimated, where * defines a polynomial
th

whose roots are the q powers of the system poles. Obvious modifications

are needed in a few places.

THE METHOD OF JAIN AND ITS EXTENSIONS

Transformation of a complex variable according to some formula = f(z)

is often employed in polynomial root solving programs, and the resulting

roots are then transformed back into the z-space. Previously we have seen

that if one transforms the pole polynomial produced by 0 to a new polynomial
th

whose roots are the q powers of the true poles, the new P vector is related

to decimated output sequences in the same way that 6 is related to undeci-

mated sequences {y(n)}. Suppose instead that the pole polynomials were modified

by a simple linear transformation of the variable z. Would the new polynomial

ii
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coefficient vector be related to some other modification of the data sequence

{y(n)}? The answer is yes. Suppose the transformation is C = [1-c Z]/c 2 so

z= [-c 2 ]/c1 , converting the e-polynomial to a p-polynomial:

(eO + e1z + .. KzK 0 + 1I +C + . K.. (14)

where C = [1-c 1 Z]/c 2 . Solving the -polynomial and then transforming the

roots will give the roots of the e-polynomial. Applying Eq. (14) to Eq. (6)

and clearing the denominators gives

K K 2
{V0 + I [ (l- c z )/ c ] + ... + jK[ l-clZ)/c 2] I Y(z) = 8Kz + ... + 8 z + 8 z,

+ 1[(2K 1 2 K-1i

where Y(z) is the Z-transform of {y(n)} and the 8i's are the coefficients in

the numerator polynomial of Y(z)/z. Defining H(z) c2/(i-ci z ) and multiply-

ing both sides by H(z)K gives

KK-1 K 2
PoHK(z)Y(z) + 1  H (z)Y(z) + ... + 1IKY(z) = HK(z) {8Kz + ... + 81 z + 80 z)

The assumption that H(z) is the Z-transform of some filter (15)

impulse response {h(n)} whose region of consequence is compatible with that

of {y(n)} permits us to take the inverse transform of Eq. (15) to get

0 nK(n) + 1riK- 1 (n) + . + UK 0(n) = {h(n)}*K: {SK_ 6(n+K) + ... + 8 06(n+l)l

K (16)
where {h(n)}*K: represents convolution (filtering) by h(n) for a

total of K times, and {0(n)} 4 {y(n)}; {n (n)} _ {h(n)}*{no (n)}; ....

etc., i.e. the {ni(n)} sequence is the result of filtering the data sequence

i times. But what kind of filter is represented by H(z)? Actually H(z) has

two inverse Z-transforms, one causal and one not, corresponding to the

difference equations:

-1Causal: xou (n+l) c I xou (n) - (c/ l x. n (n) (17)
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Non Causal: x (n) = c x (n+l) + c x (n) (18)
out 1out 2 in

We shall choose the non-causal filter, for whose Z-transform the region

of consequence is IZI < Ic I 1- I , so that to be compatible with the region of

convergence for {y(n)1 one must have icl - > max{lzkl where the z1 Is arek

the system poles. The filter has the property that inputs arriving at n<0

will contribute to the output only for n<0. Since the 6-sequences on the

right hand side of Eq. (16) are already zero for n>0, K-fold convolution by

{h(n)} will preserve this property, so for n>0 Eq. (16) gives u0 n0 (n) +

Ui l(n) + ... + uKnK(n) = 0 for n>0, i.e. the sequences ni (n) are linearly

dependent through the vector p = [0,11,... PK]. Furthermore recall that

{n0 (n)} E (y(n)}, and, using the difference equation for H(z), ni+l(n)

c (n+l) + c2 i (n) for i, n > 0.

Thus given a {y(n)) sequence generated by K poles, we can prefilter it

K times using the first order non-causal filter described in Eq. (18) to get

the n i (n) sequences, and then construct an MxK' data matrix A, where

A.. U ii.l(i-1) and then solve Au = 0 or (A TA)v = 0 for the K'xl vector V.

Then the corresponding p-polynomial can be solved for its roots, which are
then subjected to a simple linear transformation to get the system poles.

Jain's method [7] is a special case of this procedure wherein cI = c2 = 1

so that the filtering is a simple reverse-time integration of a discrete

sort, and his A matrix is essentially infinite in height (i.e. M>>I). This

gives a solution

u- adj(A TA) 0

where 10 is an arbitrary K'xl vector. Note that with P - (A TA) we have

M M-1
P ij= Z (A) 1i (A) j -Z n._1 (n) n-i (n), where the summation is extended

ii t~l ~ 9-J n=0 1 j
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to when M-- to be in conformance with Jain's results, wherein our P matrix

corresponds to Jain's "Grammian" matrix. Moreover Jain uses the diagonal

elements of adj[P] so that the p-vector is [(±)I&ii 1 , ....... . (-)KIAKKI4]

u T where A. are the diagonal cofactors of R, and the (-). notation has

been discussed earlier. The potentially annoying (W). signs might better be

avoided by simply using one of the other ways of constructing the solution of

Pu - 0. (See our section entitled "SOLVING THE HOMOGENEOUS MATRIX EQUATION.")

THE POLES AS EIGENVALUES

§ 27 THEOREM: Given an MXK' data matrix A, whose rows are post-excitation

output sequences from a system having K poles, the poles z. are the eigen-

values X in the following generalized eigenvalue problem:

T T
(A A )x (A+A+)x (19)

where A+ is A with its rightmost column removed, and A- is A with its left-

most column removed.

The usefulness of this result is difficult to determine. At least it

provides a restatement of the problem in which the poles are eigenvalues,

and in which the data appear in fairly simple form with no matrix inverses,

offering the hope that amethod can be employed to directly determine the

eigenvalues without having to compute polynomial coefficients, hence avoiding

what is generally considered to be a poorly posed problem. Perhaps as better

numerical algorithms become available for the Ax=XBx eigenvalue problem, one

of them can successfully be applied.

It is interesting to note that the eigenvalue problem can also be

written as

T
A (A- - X A +)x - 0. (20)

. . .... . .I + I tmr lr
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Equation (20) has a solution only if the matrix AT (A - X A+) is singular,

which must occur whenever X is a system pole. The similarity of this to

Jain's "pencil of functions" concept is noteworthy, particularly in view of

the following observation: The ith row of A is a data sequence {d. (n):1

=0,..,K so that the row of (A - A A +) is {d. (n+l) - X d. (n): i = 0,..,-- 1 1

(K-l) }.

OTHER ESTIMATION CRITERIA, ITERATIVE METHODS, AND ASYMPTOTIC ERROR

For a single post-excitation output sequence {y(n)}, Eq. (6) shows that

the Z-transform, Y(z), can be expressed as a function of the parameter vectors

eT = [80,,..., toK] and 8T = [80,81 ... 8K-1] that consist of the coefficients

rf the pole polynomial and numerator polynomial. Equation (6) can be

expressed as

-1l 8 - (K-l)0 K-1 + 6 K-2 
z - + "" + a 0 zK1

Y(z) = - (21)
8K + K-lZ +. 0z

We can define 8+ and 8+ as the finite impulse response (FIR) operators

(Filters) whose transfer functions are the numerator and denominator poly-

nomials of Equation (21), and 8+ as the recursive infinite impulse response

(IIR) operator that is the reciprocal of e+. To illustrate, {a(n)} = 8+{b(n)}

means a(n) = 8 K-b(n) + 8 K2b(n-l) + ... + 80 b(n-K+l) and {a(n)) = 8+{b(n)}

means a(n) = [b(n) - 8 Ka(n-l) - ... - 80 a(n-K)]/0 K for -- < n < + -. With

this notation 8+6+ is the unit operator and the sequence {y(n)} may be

expressed by inverting the Z-transforms in Equation (21) as

{y(n)} = 88+ {6(n)} (22)

where {6(n)} is the impulse sequence. If the data sequence is corrupted by

noise to give {j(n)} = {y(n) + e(n)} where the e(n)'s are zero mean,
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2

independent Gaussian random variables with common variance a , then the log-

likelihood function for {y(n)} given 8 and e is

1 2L = - E (y(n) - y(n)) + const.
2a 2 n>_

where {y(n)} is defined in terms of the parameter vectors 8 and G by Equation

(22). Thus the maximum likelihood estimate of 6,8 is obtained by choosing

them to minimize Jl = E (y(n) - y(n)) i.e. to minimize the mean square
n20

error in fitting {y(n)} to the data sequence {y(n)}. If the noise components

{e(n) } are vanishingly small then the minimum value is J =0. In that case

{j(n) - y(n)} - 0 and this null sequence could be operated upon by 6+ to

give i{y(n)} - e+{y(n)} - 0+{y(n)} - S+{6(n)} - 0. Thus the same result V

A 2would have been achieved by minimizing J2 = E r (n) where the sequence
n 0

{r(n)} = e+{j(n)I - O+(6(n)}. But J can be decomposed as J = J + J
2 2 2 1

whreJ K-1 r2 ()adJ - 2r = -r2(n) and J = E r (n). Furthermore the sequence 8+{6(n)}
n=O 21 n>K

is identically zero for n>K, so J21 depends only upon e. Indeed J20 can

always be minimized to zero by setting 8 = 8K(0) 8 K_2 =KY(l) + 6 Y(0);
K-1l eK(;K2 6'1 K-1

etc ... ; and ultimately 80 = eKY(K-I) + OKIY(K-2 + ... 61Y(0).

Thus the estimate of e is obtained by choosing it to minimize J21' i.e.

to minimize the mean square output of the 6+ FIR filter for n>K when the

input is the data sequence {j(n)}. But if one constructs an MxK' Hankel

data matrix A according to A.. = y(i+j-2) then J1 = T A TA6 so that the
ij 21

optimum e is simply the x[norm] solution of Ax=-0 discussed in earlier sec-

tions of this paper.

However minimizing J1 is not really equivalent to minimizing J2 unless

both can actually be minimized to zero, i.e. the noise is vanishingly small.

Otherwise the x[norm] solution does not minimize Jl, and is therefore not
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the maximum likelihood estimate. Direct minimization of J is difficult,

being a highly nonlinear problem. Steiglitz [18] has very neatly described

the "iterative-prefiltering" procedure for minimizing J by choosing the FIR

operators 8+ and 8+ to minimize

J3 = n>0(+ 9n -80{()

where is the IIR operator defined as the reciprocal operator to the FIR

operator 6 resulting from the previous step in the iteration process. (The

procedure can be started by taking 6 as the xfnorm] solution.) Each time

the minimization is done the resulting 6 is used as 6 in the next step. If

the procedure converges then e=6 and J so the resulting 8 is a maximum

likelihood estimate.

A different iteration method can be used to "improve" the estimat- of 8

beyond that of simply minimizing J 21 A8 = 0A 8 A although it is

based on heuristic arguments. Even when 8 is truly correct the residual

vector A@ cannot be expected to possess uniform statistical variance in its

elements. Due to the Hankel matrix form of A the residual vector can be

expressed as Ae = G(M;8)y where G is the matrix defined in Equation (11) and

y is (M+K)xl the vector whose elements form the sequence {y(n):n=O,...,(M+K-l)}.

But y can be expressed as y = y+e where y and e are the vectors of the

uncorrupted and noise components respectively, and if 8 is the true solu-

tion then Gy-O since every data subsequence of length K' is orthogonal to 8.

Hence Ae=G(M;8)e and is therefore a zero-mean, Gaussian random vector with

co-variance matrix A = T[Ae)(Ae)T] = e[G(M;e)eeT G T(M;e)], or A = GGT

T 2since e[eeT ] = a2I and the G matrix is not random. If A were known a priori

then instead of minimizing J2 1  e 12 one might prefer to minimize the
4 iIiH 2  = eT-T -1-

weighted quadratic form JA4 1 A A Ae. Unfortunately the
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matrix A = 2 GGT cannot be computed without knowing e, but an iterative pro-

cedure can be employed in which each new estimate of 8 is used to compute G

and estimate A for the next step. This procedure is a modification of that

used in Refs. [19] and [31].

In the control theory literature the J2 criteria is the one most often

used for minimization [15,16]. However in that context the problem is

usually complicated by the presence of a persistently exciting input to the

system. Furthermore there is much emphasis placed on the problem of "bias"

in the estimate of 8, but it is not statistical bias of the type dealt with

in our Theorem §1 and the discussion following. Rather it pertains to asymp-

totic bias in the estimate of 8 as the observation interval of the system

output {y(n)} becomes infinite. Indeed in that context the asymptotic bias

is connected to statistical correlation in the residuals [15], a problem that

can be alleviated by the use of pre-whitening filters, "generalized-least-

squares", or often simply by supposing that the system is of higher order

[16]. By these approaches one can theoretically produce an estimate of 6

that converges to the actual 0 (not just its maximum likelihood estimate)

as the interval of observation becomes infinite. In view of the last

approach one might conclude that the use of extra-wide data matrices in our

problem, since it is equivalent to supposing a higher system order, is

therefore justified by the experience of researchers in the control theory

area. However in our problem there is no persistently exciting input, and

the "signal" portion of a noise-corrupted data sequence {y(n)} = {y(n)} + {e(n)}

will eventually decay to insignificance, leaving only the noise, and we

cannot expect the estimate of 8 to converge to the true value. Indeed it

will almost certainly begin to diverge as soon as the signal component

decays to the point of becoming lost in the noise.
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But there is a line of heuristic reasoning that lends some relevance to

the asymptotic behavior described above. Suppose the signal component of

{y(n)1 does strongly persist for a long enough time that the statistical law

of large numbers can be applied to computations involving the noisy data;

i.e. the observation interval is infinite with respect to the noise but

finite with respect to the signal. Largeness of the interval of observation

corresponds to largeness of M in the MxN Hankel data matrix A. The nature

of the "quasi-asymptotic error" in estimating 6 using A can be determined by

-- T T T T
studying the matrix A A = (A+E) (A+E) = A A + 2(A E) + E E, where E is thes

Hankel matrix of error components, and () denotes the symmetric part of a
5

matrix. Every time M is increased, new rows are added to the A and E matrices.

This means that the elements of the NXN matrix A TA will continue to reflect

these additional summed components for as long as the signal persists. How-

ever the matrix E is a Hankel matrix derived from a sequence of independent,

2
zero mean Gaussian variables of variance a , and it immediately follows that

E TE tends asymptotically toward M.I.a 2 where I is the identity matrix. More-

Tover (A E) is a linear combination of the independent, zero-mean noises

variables, and can be expected to converge to its mean (zero) by the law of

T T
large numbers; i.e., it becomes insignificant compared with A A and E E.

(This is a broad conclusion which would require an unwieldy set of assump-

tions and pre-conditions to attain mathematical rigor). The conclusion can

be stated succinctly: For M>>l, A A A A + M*o *I where I is an NxN

identity matrix. Moreover if the rightmost column of A is isolated by par-

titioning it as A = [A +;a], then by a similar line of reasoning A A,-

A TA + M.a 21 where I is now an (N-l)x(N-1) identity matrix. With these

approximations it is possible to estimate the quasi-asymptotic error in

determining 8 given an MxN data matrix A with M>>l.
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First consider the least-squares Prony solution. In this case A is

MXK' and the solution xT = [xT l] estimates 6T, where from Eq. (13), x+

_T -1-T- -T--(AA) A+a which means that x+ is the solution of A+x+= -A~a. If one

T 2 i-
uses the approximations just derived, the result is A A+x+ + Ma2x+ = -A a

T T 2 T T T
or A +x+ -A~a + y where y -Ma2x+ +e + +e=r~ -Aayhr -a A - Ea-Ee. The result is

clearly a perturbation in the solution, a fact that has been explored in

more detail by Kay [17]. The behavior of the adjoint solution, x -

-T T 2adj(iTA)x0 ' in light of the approximation A A A A + MG I is somewhat

similar, but it is more instructive to view it as one step in the matrix

iteration process from x0 toward x[norm], whose asymptotic behavior is dis-

cussed below.

Fortunately the solution x[norm], wherein x is chosen to minimize

I lxiI subject to Ilx = 1, has no quasi-asymptotic error since IIx12 =

ATTAAT ; T +N
2 2x 2 x (Ix= A +M x12

x x- T(ATA + MG21)x^ -= J2 + MCI2J1Xl which obviously leads to the

same solution as if there had been no noise. Of course we do not mean to

suggest that x[norm] is absolutely errorless, since our argument is funda-

-T T 2mentally limited by the accuracy of the approximation A A A A + Ma I.

Nevertheless it is clear that x[norm] is free of the "asymptotic bias" that

is given so much attention in the control theory literature, and this is

perhaps the strongest argument in its favor. Before continuing to the next

section we remind the reader that the above discussion pertains strictly to

estimating e from a single data sequence {y(n)}.

PREVIOUS WORK AND UNANSWERED QUESTIONS

Since the problem treated in this paper is in most respects an extension

of that studied by Prony in the eighteenth century, not surprisingly there

exists more literature than can be referenced here. Nevertheless, we shall
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attempt to reference some of the more relevant results, particularly those

with which some of our readers may not be aware.

An interesting treatment of the least-squares Prony method, in which

the polynomial of the system poles is expressed directly as a determinant,

is given by Ellington et al. [20]. Demonstrations of the noise sensitivity

problem have been presented by Hildebrand [14] and some analytical work

along those lines has been done by Dudley (21]. A very interesting study of

the behavior of "noise poles" as a function of signal to noise ratio has

been recently published by Kay [17], including a theoretical analysis that

may be considered applicable to our problem when the observation interval is

infinite with respect to the noise but finite with respect to survival of

the signal, and an "autocorrelation" approach is appropriate. Accuracy of

time domain and spectral domain reconstructions of noisy signals using

Prony-type estimates have been studied by Spitznogle and Quazi [22] and

Beatty and George (1], and the latter paper provides a rare look at the use

of decimated data sequences.

The use of the SVD decomposition has been explored by Holt and Antill

(231,. but peculiarly enough they have applied it only to the non-homogeneous

version of the least-squares Prony solution, in which the problem becomes

poorly conditioned if extra wide matrices are used. Indeed, they use the

SVD to "recondition" the problem, rather than as a direct solution; thus

their adjusted matrix must still be inverted. Earlier approaches using

Householder triangularization have been reported by others, in particular

Van Blaricum and Mitra [11].

Price (28] has approached the problem from an eigenvector viewpoint,

although without reference to SVD. Moreover, he has addressed the problem

of forcing known poles by a transformation of the space rather than through

augmentation of the data matrix as we have done.
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An apparently different approach to the problem of exponential repre-

sentations of signals has been used by Jain with proven success [7,24], but

our derivation and extension has demonstrated its kinship with other methods.

Applications of adaptive filters inspired by Jain's method have been done by

Auton (25]. Modification of the Prony method to represent a set of several

waveforms with a common pole set has rarely been mentioned in the literature,

although it was utilized by Young and Huggins (26].

There remain many unanswered questions of which we mention only a few:

Does the advantage of using extra-wide data matrices persist if one uses the

methods for solving Ax-O that are emphasized in our paper (i.e., homogeneous

methods, x[norm], adjoint solution)? Or when one uses a non-Hankel matrix?

How cost-effective is the use of the unbiased version of the adjoint solu-

tion, when applicable? Following our derivation of Jain's method, what hap-

pens when one uses different transformations of the z variable? Would that

approach lead to other, perhaps superior, prefilters?

Ii
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APPENDIX

(THEOREM PROOFS AND PROOF OUTLINES)

THEOREM §1: If P A T then P.. = k (Al)ki(A2)k j so that P.. and P are
1A2 13 k i k1] m

statistically independent unless i = m or j = n. Each element of adj(P) is

a determinant of a "minor" submatrix of P with a row and column deleted.

But the determinant of any matrix may be defined [27] as the sum of all

possible (appropriately signed) products of elements of the matrix, wherein

each product has exactly one representative of each column and each row of

the matrix; i.e., no such product contains more than one element from either

a single row or a single column. Since the latter property applies even to

each minor submatrix of P, it follows that the expectation operator distrib-

utes on each element of adj[P] first over the sum (due to linearity) and

then onto the members within each product (since Pij and Pmn have the statis-

tical independence property described above), and ultimately distributes to

the individual elements of A and A thus proving the theorem.1 A2 , hspoigteterm

THEOREM §2: In the first version of the theorem Jhe unknown parameter A

determines the joint probability density of the data matrix A, and due to the

Gaussian assumption the log-likelihood function is L - -(22)11 IA-A112 -

1 MN log (2a)2  The maximum likelihood choice for A, given A, is that

which maximizes L within the known set of possible A's (in this case the set

of MxN matrices of rank K). Clearly A(K;SVD) is that choice, since It mini-

mizes the Frobenius norm. If K is also an unknown parameter, known only to

be less than N (where NM), then L is clearly maximized by using A(K;SVD)

with K = N-l, since A can always be approximated as well by matrices of

*41 - 41 -
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larger and larger rank. If some probability distribution for K is known

a priori, say PK, then the traditional modification to the maximum likelihood

procedure is to choose A to maximize the weighted likelihood, which gives the

log-likelihood function L = -(22- )iIi-Al + log - MN log (27ra2).

Since A(K;SVD) then maximizes L for each particular K, the optimum K is that

which minimizes I IA-A(K;SVD) .2 - 202 If one seeks to estimate (A)
F K* foesest siae0A

rather than A, the situation is more complicated. The nullspace, O(A), is a

peculiar sort of parameter, and is not sufficient to determine the proba-

bility distribution of A. It does however determine a family of possible

distributions, and thus a family of log likelihood functions L =

- (2 )_,1 -AII2 + const., parametrized by the matrix A (compatible with

the specified nullspace). Clearly setting A = A(K;SVD) achieves a global

maximum of L for matrices of rank K, and taking O(A) = 0(A) then gives a

nullspace estimate whose family of likelihood functions includes one that

achieves the maximum. In another sense, estimating 0(A) is a partial esti-

mation problem in which additional parameters (i.e., the elements of A) must

be estimated incidentally.

THEOREM §3: To prove this theorem we first develop several lemmas.

Lemma 1: For any MxN matrix B and its Kth-rank approximant C = B(K;SVD)

where K _< rank(B), then for any Nxl vector x,

(a) I IBxcII SVK(B) J xjI , and

(b) IIBx~ll _s VK+lCB) Ijx~ll .

Proof: Let the SVD of B be given as B - USVT and let S and V be partitioned

as S - [S 1 ;S 0], V = [VI;V0 ] where in each case the leftmost K columns are

isolated. Then B - T + T the diagonal elements of S 1are the
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first K singular values of B, thus non-zero. The approximant C may be

obtained by artificially setting S to zero, which means that *(C) is simply

the space orthogonal to the columns of V, i.e., spanned by the columns of
T T '

V0 . Thus VlX = 0 = V0x . Then since U and V are orthogonal transformation

matrices,I ISxcll1 = I'-'(Sl' T o l T T Z v (l 1VT t-,
Iv+IlVXcl I" svK(sl I IViXcl =

or since V1 consists of orthonormal columns, C

ll BxCll 2: svK(B) l lxCll. :

Similarly
Ii x IIU(SV+ Sooxll I T allS l V--~l 1 -- 0sovx~l sv l so  I Xall

or simply

IIBx ll :S svK+l( ) IIx:ll•

Lemma 2: For any MXN matrix A of rank K, and any NXl vector x,

llxAll _l lAxAll/svK (A)

Proof: Use Lemma l(a) with B A so that C = A also; solve for llxAll-

Lemma 3: With same hypothesis as Lemma 2, and another NXM matrix E, where

rank(A) = rank(A+EA), then llXAlI S ll(A+EA)Il/svK(A+EA)-

Proof: Apply Lemma 2 with A replaced by A+EA , noting that XA = x(A+EA)

Lemma 4: If x is a unit vector lying in the nullspace of A(K;SVD), where

A - A+E and A is an MxN matrix of rank K, then

S I IsvK+l (i :S IE

Proof: Apply Lemma 1(b) with B and x _ x. Then by assumption XE - x

and I IEl I 1. To get the rightmost inequality we use a fundamental
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property of singular values [9]:

svKil (A) =svK+I(A+E) < sv+i(A) + svl(E) =0 + HlEll

Lemma 5: Same as Lemma 4, ending with IIEill instead of Ell.

Proof: As before, but use
s (A) :sv +(A+E A +Ej) < svK+ (A+E + svl (E ) 0 + 1hE-Il

Lemma 6: With A,E as before and x any unit vector, then

(a) IAXAl S hlAxil + IlEll , and

(b) II (A+E)xA II 5 1xlI + IIEjII

Proof: Ax =Ax (i-E)x=x- Ex , so

IIAxAhh :E h-lil + hlExil S h1ixil + -lIEu since llx I =1.

Part (b) results similarly upon noting that

(A+E A)x A = (A+EA)x - (A-E)x

Lemma 7: If a and 8 are positive and a _S 8, then a+8 28 2(a+8).

Proof: Obvious.

The theorem follows immediately, defining b1  {A x^Hl + IIEIIj/svK(A)

and b2 4 211EII/svK(A) and using Lemmas 2, 6(a), 4, and 7 in sequence; and

defining b3 a {[ ixl[ + IIEjlI}/SvK(A+EA) and b4 4 21AER[ /SVK(A+E A) before

applying Lemmas 3, 6(b), 5 and 7.

THEOREM §5: Since both ends of the 6 vector are non-zero by assumption, no

row of G can be expressed as a linear combination of the rows above, and all

the rows are therefore linearly independent by induction. To prove unique-

ness of the generator, suppose that there are two matrices Ga nd G as in

Eq. (11) that span the same S1 i.e., they have the same rowspace. Then by
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construction the top row of G2 is non-zero only for its first K' elements,

and it can be expressed as a linear combination of the rows of G But that

combination cannot include the last row of G since it would produce a non-

zero rightmost element. Similarly each higher row of G1 can be ruled out so

that the top row of G2 is a scalar multiple of that of G1; i.e., the genera-

tor is unique to within a scalar multiple.

THEOREM §6: Although the dimension of the power vector Z has always been

inferred from the context of its use, for the proof of this theorem we shall

promote clarity by appending the dimension as a subscript in parentheses,

e.g. Z(N). Thus if z is a root of the generator polynomial then OTZ(K) = 0,

which clearly implies GZ (N) = 0, where G is the matrix G(Z;O) of Eq. (11).

TBut xSI(8) implies x lies in the rowspace of G, i.e., x = G T for some Lxl

TA T h that T T
vector a = aci 1  Then it is easily shown thatx Z (N) GZ(N)

T ( (eT

(a Z ) ( ). Clearly the roots of the generator polynomial are a
00) (K')

Tsubset of those of x Z (N) and the L-1 extraneous roots can be placed at will

by selecting the elements of a as the coefficients of a polynomial whose

roots are the desired extraneous set. Moreover since the polynomial coeffi-

cients of all three polynomials are real, all three root sets contain only

conjugate pairs.

THEOREM 7: The N-dimensional power vectors of the (distinct) roots z. of1

the generator polynomial constitute a set of K linearly independent vectors

since they can be juxtaposed to form columns of a matrix for which the upper

KxK submatrix is Vandermonde, and therefore nonsingular. Since each such

power vector obviously lies within the nullspace of the G matrix of Eq. (11)
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so that the set spans that nullspace, the K-dimensional subspace of RN that

is the orthogonal complement is identically jZ(6), the rowspace of G.

THEOREM §9: Obviously y i ai(8) if and only if Gy = 0, where G is the matrix

of Eq. (11), and the theorem follows immediately.

T
THEOREM §11: Clearly if A is 8-AR then AG = 0 where G is the matrix of

Eq. (11). But AG '= 0 implies [29] rank(A) _ N - rank( = N-1 = K. However

xesl,(O)iff x = GT a for some a, but then Ax = AGT a = 0, so xE (A). If

rank(A) = K then 0(A) is a subspace of dimension N-K = Z, the same as the

dimension of S12Z(6), so in that case 0(A) and S (8) are identical. Thus
.T

Ax=-0 implies xeQ X (8) and therefore the roots of x z constitute a superset of

the roots of the generator polynomial by Theorem §6.

THEOREM §14: Since both ends of 8 are non-zero, at least one-member of any

basis of al (8) must have its first element non-zero, and the scaling described

in the theorem statement clearly does no harm. Furthermore {g 1 ;a 2 ,a 3 1 ... }

is still a basis since gl could be added to the a's to recover the original

basis. Now if x is an arbitrary vector in Ql (0) and we augment it by

attaching an initial zero element to form a vector x, then it can be expressed

as a linear combination of the bottom £-1 rows of G(£;8), hence as a linear

combination of the basis vectors {g 1 ;a 2 ,a 3 ,...). Indeed g1 can obviously be

ruled out of the combination, and it follows easily that x lies in the space

spanned by {a2 a3 ,...,a} as defined in the theorem. Since that set is of

dimension £-1, it must constitute a basis of £_ (e). The corollary follows

directly.
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THEOREM §16: Perturbations in the (assumed distinct) roots of the polynomial

x TZ due to perturbations in the x vector may be determined to first order by

setting the total differential of the polynomial to zero at each root loca-

tion: (x+6x)Tz + xT(z+dz) = 0 at Z = Z But since xTz = 0 we haveT T T - 11

(6x) Z. = - x 6Z. = - x DZ.z- dz.3. 1 1 1 1

where the diagonal matrix is as defined in the theorem. Solving for dzi/z i

and noting that x = x+Sx to first order gives

dzi/z i =- (6x)T Zi/(x+6x)T DZ.

For the purpose of the theorem we set the nominal value, x, as the "correct"

portion of the approximate solution x, i.e., x = xi. Then clearly 6x = xA ,

and x+6x = x so the theorem follows immediately.

THEOREM §19: The theorem follows directly from the fact that A A is nonsin-

gular, so that premultiplying the equation by A A gives det(A A)x on the
0

left-hand side, and A A can be partitioned as
i- -T- -T-I

[ +i aaI
The rest is simple algebra.

THEOREM §27: The least-squares Prony solution of Eq. (13) can be expressed

as y T [yT;I]T where y is a Kxl vector defined as y+ - (A A+) ATa, and

the system poles are the roots of the polynomial yT Z. But the roots of any

such normalized polynomial are identically the eigenvalues of the companion

matrix [30]:
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-
I y+C : 
|:

i.e., as the eigenvalues X in Cx = Xx, where I is a (K-l)X(K-l) identity

matrix. Premultiplying this equation by TA+ and carefully carrying out the

partitioned multiplication leads directly to the theorem.

I'

I1
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